General Biostatistics Part 9 **Common Statistical Methods** Simple Linear Regression - Class 5A Marie Diener-West, Ph.D. Department of Biostatistics Johns Hopkins University Bloomberg School of Public Health **Outline**

- Association
- Correlation
- · Straight line relationship
- · Simple linear regression
- · Method of Least Squares
- · Interpretation of least squares coefficients
- Example

Association

- Express the relationship or association between two variables
- Can be measured in different ways depending on the nature of the variables
 - continuous (e.g. height and weight)
 - ordinal (e.g. Apgar score and birth weight category)
 - nominal (e.g. vital status and cancer treatment)

4

Measures of Association

- Chi-squared statistic
 - Association between 2 nominal variables
- · Pearson correlation coefficient
 - Linear relationship
- · Spearman rank correlation coefficient
- · Kappa statistic
 - Agreement between raters

5

Correlation Analysis

- Describe the straight line relationship between two continuous variables
 - Correlation analysis
 - Measuring strength and direction of relationship
 - Regression analysis
 - Predicting or estimating the value of one variable based on the value of the other variable

Correlation Analysis

- · Visually inspect the data
 - no, negative, positive correlation?

Correlation Analysis

- · Sample correlation coefficient, r
 - Independent of the units used to measure the variables
 - r = +1, perfect positive association
 - r = 0, no association
 - r = -1, perfect negative association
- Guidelines for interpretation (+ or)

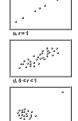
 0 to 0.25 little or no relationship

0.25 to 0.50 0.50 to 0.75 0.75 to 1.00

fair

moderate to good very good to excellent

Examples of Correlation



g. 0 < r < 1

Correlation Analysis

- Test Ho: ρ =0 where ρ is the true population correlation coefficient
- Construct confidence interval for ρ

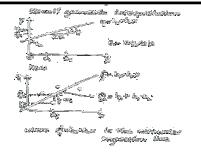
10

Simple Linear Regression (SLR)

- A linear regression describes a response measure, Y, the <u>dependent</u> <u>variable</u>, as a function of an explanatory variable, X, the <u>independent variable</u>
- Goal: predict or estimate the value of Y based on the value of X

1

Straight Line Relationship



Method of Least Squares

• $Y = \beta_0 + \beta_1 X + \varepsilon$

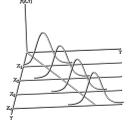
• β_0 = the y-intercept

• β_1 = the slope = $\Delta Y / \Delta X$

13

Assumptions of SLR

- · L linear relationship
- I independent Y's
- N normally distributed
- E equal variance



14

Method of Least Squares

• The "best" line is determined by finding the estimates of β_0 and β_1 which minimize the sum of the squared differences between an observed point and a fitted point on the line (e.g. minimizes the sum of squared "error" terms)

Least Squares Estimators

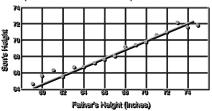
$$b_0 = \overline{Y} - b_1 \overline{X}$$

$$b_1 = \frac{\sum_{i} X_{i} Y_{i} - n \overline{X} \overline{Y}}{\sum_{i} X_{i}^{2} - n \overline{X}^{2}}$$

16

Galton's Linear Regression

 Galton's study of heights of fathers and sons (Y = 33.7 + 0.52 X)



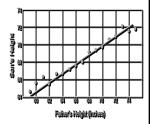
17

Galton's Linear Regression

- How do we interpret Y = 33.7 + 0.52 X?
- $Y = b_0 + b_1 X$
- Y = son's height; X = father's height
- b₀ = expected son's height when father's height is 0 inches
- b₁ = the difference in expected heights of sons whose fathers' heights differ by one inch

Galton's Linear Regression

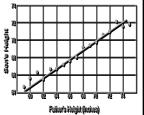
- $Y = b_0 + b_1 X=33.7 + 0.52X$
- What is b₀ ?
- b₀ = 33.7 inches = expected son's height when father's height is 0 inches



19

Galton's Linear Regression

- What is b₁?
- b₁ = 0.52 inch difference in expected heights of sons whose fathers' heights differ by one inch
- "Reversion" or "regression to the mean"



20

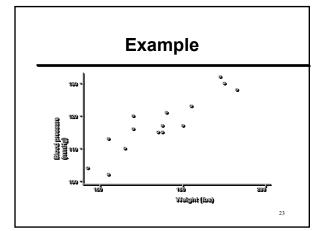
Example

Weight (lbs)	Blood Pressure (mm Hg)
157	104
162	113
152	102
158	129
166	110
158	116
174	115
175	115
175	121
175	117
130	117
182	123
193	128
189	132
199	139

Example

- The mean blood pressure for this sample of 15 subjects is 117.5 mm Hg
- The sample variance is $s^2 = 74.3 \text{ (mm Hg)}^2$
- The sample standard deviation is s = 8.6 mm Hg
- How much of the variability in blood pressure is due to its relationship with weight?

22



Example $\hat{y} = -7.209 + 0.715 * weight$ r = 0.90Weight (lbs)

Example

$$\hat{y} = b_0 + b_1 * \text{weight}$$

$$\hat{y} = -7.209 + 0.715 *$$
 weight

- · Simple linear regression line
- How do we interpret this line?

25

Example

$$\hat{y} = -7.209 + 0.715 *$$
 weight

 Based on a simple linear regression analysis of blood pressure on weight among these 15 subjects, the estimated change in the expected value of blood pressure is 0.715 mm Hg per each one pound change in weight (95%CI: 0.511, 0.919)

2

Example

$$\hat{y} = -7.209 + 0.715 *$$
 weight

 Based on this estimated regression line, we could predict blood pressure for a person weighing 175 pounds:

$$\hat{y} = -7.209 + 0.715(175) = 118 \,\mathrm{mm}\,\mathrm{Hg}$$

Example

- The correlation coefficient r = 0.9
- r² = 0.81 which indicates that 81% of the variability in blood pressure can be explained by its linear relationship with weight
- From the linear regression, a better estimate of $\sigma^2 = 14.8 \quad (\sigma = 3.8)$

28

ANOVA for Regression

- Partition the total variation in the Y's into two components: the variation explained by the regression (the linear relationship between Y and X) and the variation not explained by the regression (error)
- SST= SSR + SSE where
 - SST= total sum of squares
 - SSR= regression sum of squares
 - SSE = error sum of squares

2

ANOVA for Regression

Source	ಖ	CLE	NS		Number of dis	
lebtii Lebical	847.45661 192.27 <i>572</i> 3	1 13	947.45661 14.7505172		F(1, 13) Pucb > F R-squared	= 57.30 = 0.0000 = 0.8151
Total	1039.73333	14	74.2656657		Aij R-squad Root MEE	= 0.8008 = 3.8458
ip I	Otef.	Strl. E	im. t	와티	[95% Canif.	Interval
WE	.7149924	.094	157 7.569	0.000	.5109303	.915054
ಯತ	-7.209	15.50	95 -0.437	0.570	-42.8755	28.45759

Summary

- Simple linear regression analysis explores the linear relationship between one independent (predictor) variable and one dependent (response) variable.
 - Allows assessment of association (correlation)
 Provides prediction
- Linear regression analysis can be extended to multiple predictor variables.